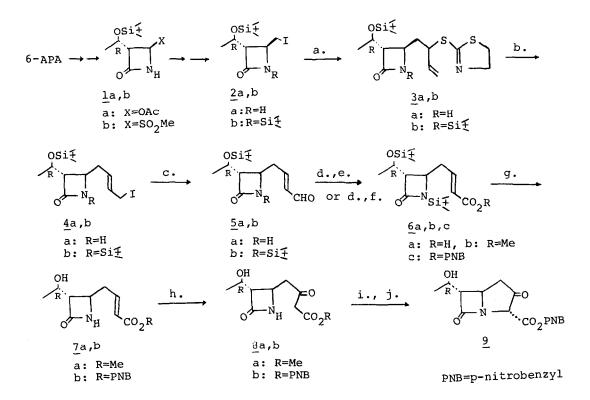
FROM PENICILLIN TO PENEM AND CARBAPENEM. IV¹⁾ SYNTHESIS OF 2-OXOCARBAPENAM DERIVATIVE

Koichi Hirai^{**}, Yuji Iwano, and Katsumi Fujimoto


Chemical Research Laboratories, Sankyo Co., Ltd. 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140, Japan

Summary : Previously obtained 4-iodomethylazetidinone derivative $(\underline{2}a)$ is transformed <u>via</u> the *trans*-iodopropenylation method into the β -keto ester $(\underline{8})$, which is thought to be an important precursor for the synthesis of the carbapenem derivatives.

Beside the potent antibacterial and the strong β -lactamase inhibitor activity of the so-called carbapenem compounds (e.g. thienamycin)²⁾, the unique structural feature of the molecule attracted the chemists to synthesize these compounds from variety of the starting materials³⁾. We are also interested in the synthesis of carbapenems from the readily available 6-APA, and have already reported the degradation work of penicillin⁴⁾ and C₁-unit introduction at C-4 of azetidinone molecule¹⁾. In the line of the above work, here we wish to describe the synthesis of 2-oxocarbapenam derivative (<u>9</u>) using our originally developed *trans*-iodopropenylation method.⁵⁾

The iodomethyl azetidinone (2a), prepared by our previously reported procedure¹⁾, was reacted with 3.5 equivalents of lithium salt of allylthiothiazoline in THF (-78°-0°C for 2.5 hr)⁵⁾ to afford the desired product(<u>3</u>a) as a diastereomeric mixture (one of which is crystalline, mp 86°C) in 58 % yield. The same reaction was applicable to the N-silylated derivative (<u>2</u>b), mp 70°C (prepared by $ClSiMe_2^{t}Bu/Et_3N$, cat.DMAP in DMF, quantitative yield) in THF-HMPA (5%) solution. The reaction proceeded more cleanly to give the desired product (<u>3</u>b)⁶⁾ as a diastereomeric mixture (one of which is crystalline, mp 125°C) in

3251

a., $\bigwedge_{\text{Li...N}} S \longrightarrow S$ / THF-HMPA(5%),-78°-0°; b., excess MeI/DMF; c., DMSO/ NaHCO₃, 130-140°, 3 min.; d., 90% H₂O₂,cat.SeO₂/ ^tBuOH, 50-60°; e., CH₂N₂; f., PNBBr, NaHCO₃/ DMF; g., 10% aq.HCl; h.,Na₂PdCl₄, ^tBuO₂H/ AcOH-H₂O; i, TsN₃-Et₃N j., Rh(OAc)₂/ C₆H₆

72 % yield, and 17 % of $\underline{2}b$ was recovered. Next step is rearrangement⁷⁾; each of the azetidinone-thiazoline derivative $\underline{3}a$, b was treated with excess of MeI in DMF in the presence of CaCO₃, NaI and Hg(cat.) at 50°C for 5 hr to give the corresponding allylic iodide derivatives $\underline{4}a$ and $\underline{4}b$ in 75 % and 78 % isolated yields respectively.

The following Kornblum oxidation step was smoothly performed in DMSO at 130°

-140°C (preheated) for 3 minutes in the presence of NaHCO₃ to yield the α,β unsaturated aldehyde 5a (oily, aldehyde H at δ 9.52, d, J=7.5 Hz) and the crystalline 5b (mp71°-73°C) in 69 and 73 % yield respectively. The conversion of the α,β -unsaturated aldehyde 5b to the corresponding carboxylic acid 6a was satisfactorily achieved by the method of Smith and Holm⁸) using 90 % H₂O₂ and catalytic amount of SeO₂ in ^tBuOH at 50°-60°C for 1 hr. The crude acid 6a was esterified with diazomethane to give the methyl ester derivative 6b (78 % from the aldehyde 5b), and with p-nitrobenzyl bromide/ NaHCO₃ in DMF to give the PNB ester derivative 6c, mp 113°C in 62 % yield from 5b. The desilylation reaction was smoothly effected by adding 10 % aq. HC1 to the solution of 6b,c in MeOH-THF for 2 hr at r.t. to give the (R)-hydroxyethyl azetidinones 7a (mp 104°C) and 7b (mp 95°C). Palladium catalyzed oxidation of the ß-position of the α,β unsaturated ester using Na₂PdCl₄ and ^tBuOOH (Tsuji method)⁹) was applicable to both the ester 7a and 7b to afford the ß-keto esters 8a (mp 102°C, soluble in water) and 8b (mp 121°C, $\{\alpha\}_{p}^{22} + 21.3^{\circ}$ (c=0.31, CHCl₃) in 42 and 54 % yield⁹).

The final steps for the formation of the 2-oxocarbapenam derivative $(\underline{9})$ were followed to the method of Merck group¹⁰⁾; the β -keto ester <u>8</u>b was converted to the α -diazo- β -keto ester (mp 161°C), which was then cyclized to the final 2-oxocarbapenam derivative <u>9</u> in high yield. The transformation of <u>9</u> to thienamycin and the related compounds were satisfactorily achieved.

REFERENCES AND NOTES

- 1) Part III, K. Hirai, Y. Iwano and K. Fujimoto, <u>Tetrahedron Lett.</u>,4025(1982).
- W.J. Leanza, K.J. Wildonger, J. Hannah, D.H. Shih, R.W. Ratcliffe, L. Barash, E. Walton, R.A. Firestone, G.F. Patel, F.M. Kahan, J.S. Kahan, and B.G. Christensen, "Recent Advances in the Chemistry of β-lactam Antibiotics" second international symposium (1980,London) Abst. Paper p.240.
- 3) M. Miyashita, N. Chida, and A. Yoshikoshi, <u>Chem</u>. <u>Comm</u>., 1354 (1982) and the references cited therein.

- 4) K. Hirai, Y. Iwano, and K. Fujimoto, Heterocycles 17, 201 (1982).
- 5) K. Hirai and Y. Kishida, Org. Syntheses 56, 77 (1977).
- 6) Selected Data, <u>3</u>b (crystalline one): \mathcal{V} (Nujol) 1741, 1570 cm⁻¹; δ (CDCl₃)0.05 (Me), 0.07(Me), 0.20(Me), 0.25(Me), 0.88(^tBu), 0.95(^tBu), 1.20(Me,d,J=6.5 Hz), 1.7-2.55(2H), 3.03(1H,dd,J=3.5 and 2.5 Hz), 3.32(2H,t,J=7 Hz), 4.15 (2H,t,J=7 Hz), 4.0-4.4(2H), 5.05-6.30(3H, olefinic). <u>4</u>b: δ (CDCl₃) 0.07 (Me×2), 0.23(Me×2), 0.89(^tBu), 0.96(^tBu), 1.15(Me,d,J=6 Hz), 2.0-2.65(2H), 2.75(1H,dd,J=5.5 and 2.5 Hz), 3.4-4.3(4H), 5.3-6.2(2H). 5b: y(Nujol) 1740 1700 cm⁻¹, δ (CDCl₃) 0.05(Me×2), 0.07(Me×2), 0.24(Me×2), 0.87(^tBu), 0.96(^tBu), 1.18(Me,d,J=6 Hz), 2.4-2.9(3H), 2.5-2.85(1H), 4.1 (1H, quintet, J=6 Hz), 6.17(1H,dd, J=16 and 8 Hz), 6.76(1H, td, J=6.5 and 16 Hz), 9.51 (1H,d, <u>6</u>c: ν' (Nujol) 1735, 1665, 1528, 1378 cm⁻¹, δ (CDC1₃) 0.07 (Me J=6.5 Hz). x2), 0.24(Mex2), 0.86(^tBu), 0.97(^tBu), 1.14(Me,d,J=6.5 Hz), 2.2-2.7 (2H), 2.79(1H,dd,J=5 and 2.5 Hz), 3.5-3.85(1H), 3.9-4.3(1H), 5.20(2H, br s), 5.91 (1H,d,J=16 Hz), 6.9(1H,td,J=7 and 16 Hz), 7.4-8.3 (4H, $A_{2}B_{2}$). 7b**: б**($CDC1_3+D_2O$) 1.28(Me,d,J=6 Hz), 2.63(1H,t,J=7 Hz), 2.92(1H,dd, J=5.5 and 2.5) Hz), 3.65-4.1(1H), 4.0-4.45(1H), 5.21(2H,s), 5.95(1H,d,J=16 Hz), 7.0 (1H, td, J=7 and 16 Hz), 7.35-8.35(4H, A_2B_2).
- 7) K. Hirai, Y. Iwano, and Y. Kishida, Tetrahedron Lett., 2677 (1977).
- 8) C.W. Smith and R.T. Holm, J. Org. Chem., 22, 746 (1957).
- 9) J. Tsuji, H. Nagashima, and K. Hori, <u>Chem. Lett.</u>, 257 (1980).
 Recently same type of reaction was applied to the β-lactam field; S.Takano,
 C. Kasahara, and K. Ogasawara, <u>Chem. Lett.</u>, 631 (1982).
- 10) T.N. Salzmann, R.W. Ratcliffe, B.G. Christensen, and F.A. Bouffard, J. <u>Am</u>. <u>Chem. Soc</u>., 102, 6161 (1980).

(Received in Japan 23 April 1983)